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2 ARAÚJO, MITCHELL, AND SCHNIEDER

1. Introduction

One of the fundamental aspects of the study of finite semigroups is the inter-
play between groups and idempotents. There are many examples among the most
famous structural theorems in semigroup theory, such as, the Rees Theorem [24],
or McAlister’s P -Theorem [20, Part II, Theorem 2.6] (see also [22]), that show the
large extent that the structure of a semigroup is shaped by a group acting in some
way on an idempotent structure.

Another topic that has recently attracted a great deal of attention is a general
problem that might be described as follows: classify all groups G of permutations
(possibly an adjective, such as, primitive, imprimitive, linear, rank k, added) of a
set X such that G and an arbitrary singular mapping on X generate (or give rise,
in some other sense to) a semigroup with a given property. A mapping is singular
if it is not a bijection, and hence, non-invertible. We offer the conjecture that the
years to come will confirm this as a mainstream topic in semigroup theory. Such
problems are considered, for instance, in [1], [3], [6], [23]. In this paper, we offer a
contribution to this area by proving Theorems 1.1 and 1.2 below. Before stating
these theorems we review some concepts and introduce some notation.

A permutation group of degree n is just a subgroup of Sn. Recall that an ele-
ment a of a semigroup S is said to be an idempotent if aa = a. We say that S is
idempotent generated if it is generated by the set of its idempotent elements. An
element a is regular if there is some b ∈ S such that a = aba. If a is an idempo-
tent, then a = aaa, which shows that idempotent elements are always regular. A
semigroup S is said to be regular if all its elements are regular. The symbols Tn,
An, and Sn denote the semigroup of all transformations, the group of all invertible
even transformations, and the group of all invertible transformations of the finite
set {1, . . . , n}, respectively. The permutation groups that appear in the following
theorems are described immediately before Theorem 2.7. If a is a transformation,
and g is an invertible transformation, then ag denotes the conjugate g−1ag of a by
g. If Y is a subset of Tn, then 〈 Y 〉 denotes the semigroup generated by Y .

The main theorems of our paper are the following.

Theorem 1.1. If n > 1 and G is a subgroup of Sn, then the following are equiva-
lent:

(i) The semigroup 〈G, a 〉 \G is idempotent generated for all a ∈ Tn \ Sn.
(ii) The semigroup 〈 ag | g ∈ G 〉 is idempotent generated for all a ∈ Tn \ Sn.
(iii) One of the following is valid for G and n:

(a) n = 5 and G ∼= AGL(1, 5);
(b) n = 6 and G ∼= PSL(2, 5) or PGL(2, 5);
(c) G = An or Sn.

Theorem 1.2. If n > 1 and G is a subgroup of Sn, then the following are equiva-
lent:

(i) The semigroup 〈G, a 〉 is regular for all a ∈ Tn \ Sn.
(ii) The semigroup 〈G, a 〉 \G is regular for all a ∈ Tn \ Sn.
(iii) The semigroup 〈 ag | g ∈ G 〉 is regular for all a ∈ Tn \ Sn.
(iv) One of the following is valid for G and n:

(a) n = 5 and G ∼= C5, D5, or AGL(1, 5);
(b) n = 6 and G ∼= PSL(2, 5) or PGL(2, 5);
(c) n = 7 and G ∼= AGL(1, 7);
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(d) n = 8 and G ∼= PGL(2, 7);
(e) n = 9 and G ∼= PSL(2, 8) or PΓL(2, 8);
(f) G = An or Sn.

The proofs of Theorems 1.1 and 1.2 will be given in Sections 3 and 4.
The line of research that this paper extends was initiated by Howie in [11].

Howie showed that the semigroup 〈Sn, a 〉 \Sn is idempotent generated and regular
whenever a is a singular transformation of Tn with image of size n − 1. Later
Symons [27] and Levi and McFadden [14] proved the following generalization. For
a singular transformation a ∈ Tn \ Sn, the semigroups 〈 ag | g ∈ Sn 〉 and 〈 Sn, a 〉 \
Sn coincide; in addition, this semigroup is idempotent generated and regular (see
Lemma 2.1). Later Levi [15] showed that this last theorem remains true if we replace
Sn by the alternating group An. Another related result is a theorem of McAlister
stating, for an idempotent e with image of size n− 1 and for a permutation group
G 6 Sn, that the semigroup 〈G, e 〉 is regular (see [21, Theorem 3.10]).

Theorems 1.1 and 1.2 generalize the results of Levi and McFadden [14, 15] re-
ferred to above, and also provide a converse.

The class of semigroups of the form 〈 G, a 〉 \ G where G 6 Sn and a ∈ Tn is
related to the class of Sn-normal semigroups introduced in [26]. For a semigroup
S 6 Tn define

N(S) = {g ∈ Sn | Sg = S},
where Sg = {ag | a ∈ S}. It is clear that each element of N(S) induces an
automorphism of S, and this gives rise to a homomorphism from N(S) into AutS.
If the kernel of this homomorphism is trivial, then we can consider N(S) as a
subgroup of AutS. A semigroup S 6 Tn is said to be Sn-normal if N(S) = Sn.
Schreier [25] and Mal’cev [18], more or less explicitly, proved, for a semigroup S
containing all the constant mappings, that AutS = N(S). The class of Sn-normal
semigroups was characterized in [14] as follows: a semigroup S 6 Tn \ Sn is Sn-
normal if and only if

S =
⋃
α∈S
〈 Sn, α 〉 \ Sn.

This serves as a further incentive to study the class of semigroups 〈G, a 〉 \G where
G 6 Sn and a ∈ Tn.

The proofs of our main theorems rely on techniques from the theory of permuta-
tion groups and on explicit machine computations. In Section 2 we introduce a new
property for permutation groups, namely the universal transversal property (see
Definition 2.3). We refer to groups satisfying this property as universal transversal
groups. We show in Lemma 3.1 that the assertions in Theorem 1.1(i)–(ii) and in
Theorem 1.2(ii)–(iii) imply that G satisfies the universal transversal property. (It
is not too hard to show that Theorem 1.2(ii) follows from Theorem 1.2(i); see the
proof of Theorem 1.2 in Section 3.) The remaining part of Theorem 1.1 is verified
by first giving an explicit list of the permutation groups that satisfy the universal
transversal property (Theorem 2.7), and then verifying one-by-one which of them
gives rise to an idempotent generated semigroup. The converse of Theorem 1.2 is
proved using the results of [13]. The computations in the last stage of the proof
were often carried out using the computational algebra system GAP [9]. Full details
of these computations are available on the paper’s companion webpage [2]; see also
Section 5.
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As mentioned in the previous paragraph, the proofs of the two main theorems
are partly based on the classification of the universal transversal groups, given in
Theorem 2.7. The action of a universal transversal group relates transversals and
partitions in some way, and so the class of universal transversal groups is closely
related to the class of synchronizing groups. In fact it is shown in Lemma 4.1 that a
universal transversal group is synchronizing (see Section 4 for the definition). The
class of synchronizing groups has recently been a very active research topic in the
theory of finite permutation groups; see [1], [3], [6], and [23]. As synchronizing
groups are primitive, it follows that universal transversal groups are too. It has
been known for a long time that primitive subgroups of Sn that do not contain An
must be small in comparison to the size of Sn; the estimate which is most useful for
us is given by Maróti [19]. On the other hand, the nature of universal transversal
groups imply that they must be large, and we use these two facts to classify them
completely.

As Maróti’s theorem uses the classification of finite simple groups, our main
results also depend on the classification. Of course, the size of a primitive permuta-
tion group can be bounded independently of the classification; see the introduction
of [19] for references. However, these bounds were not sufficiently practical for the
purposes of proving Theorems 1.1 and 1.2.

The structure of the paper is as follows. In Section 2 we establish the connection
between the classes of regular semigroups, idempotent generated semigroups, and
universal transversal groups. The classification of universal transversal groups is
stated without proof in the same section (Theorem 2.7). Assuming that we know
the complete list of universal transversal groups, we prove the main theorems of
the paper in Section 3. The proof of Theorem 2.7 is given in Section 4. Finally,
in Section 5, we describe in more detail the machine calculations that were used in
the proofs of our results.

We refer the reader to [12] for further information on the fundamentals of semi-
group theory.

2. Semigroups and the universal transversal property

The main objective of this paper is to investigate the semigroups 〈G, a 〉 \G and
〈 ag | g ∈ G 〉 where G is a subgroup of Sn and a is a non-invertible transformation
in Tn. Since, for a ∈ Tn \Sn and g ∈ Sn, the element ag is not invertible, we obtain
that 〈ag | g ∈ G〉 6 〈G, a〉\G. The next result states that certain semigroups arising
from alternating and symmetric groups are regular and idempotent generated.

Lemma 2.1. Let a ∈ Tn \ Sn and let S = 〈 ag | g ∈ Sn 〉. Then the following hold:
(i) S = 〈 Sn, a 〉 \ Sn = 〈 An, a 〉 \ An = 〈 ag | g ∈ An 〉;

(ii) S is idempotent generated;
(iii) S is regular.

Proof. It is easy to see, for b ∈ S and g ∈ Sn, that bg ∈ S, which shows that the
semigroup S is Sn-normal. Thus assertions (ii) and (iii) follow from [14, Theorem 6
and Proposition 9]. That S = 〈 Sn, a 〉 \ Sn is noted after [14, Proposition 4], while
S = 〈 g−1ag | g ∈ An 〉 follows from [15, Proposition 6]. Therefore

S = 〈 Sn, a 〉 \ Sn > 〈 An, a 〉 \ An > 〈 g−1ag | g ∈ An 〉 = S

which gives that the two inequalities in the previous displayed line are, in fact,
equalities, and so (i) holds. �
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The following result is noticed by McAlister in the proof of [21, Lemma 2.2].

Lemma 2.2. For a ∈ Tn \ Sn and G 6 Sn, the semigroups 〈 G, a 〉 \ G and
〈 ag | g ∈ G 〉 have the same set of idempotents. Consequently, if 〈 G, a 〉 \ G is
idempotent generated, then 〈G, a 〉 \G = 〈 ag | g ∈ G 〉.

Proof. For a semigroup S, let E(S) denote the set of idempotents in S. Set S1 =
〈 ag | g ∈ G 〉 and S2 = 〈 G, a 〉 \ G. As noted above, S1 6 S2, and so we are only
required to prove that E(S2) ⊆ E(S1). Every element of the semigroup S2 can be
written as g1ag2a · · · gnagn+1 where gi ∈ G. Let u = g1ag2ag3 . . . gnagn+1 be an
idempotent of S2. Then

u = ag
−1
1 a(g1g2)−1

a(g1g2g3)−1
. . . a(g1g2g3...gn)−1

(g1 . . . gn+1).

Write u = vg, where g = g1 . . . gn+1 and v ∈ S1. Now, as G is a finite group, there
exists n > 1 such that gn is the identity and, as u = vg is idempotent, we have

vg = (vg)n

= v(gvg−1)(g2vg−2) . . . (gn−1vg−n+1)gn

= v(gvg−1)(g2vg−2) . . . (gn−1vg−n+1) ∈ S1.

Hence u = vg is an idempotent of S1, and so E(S2) ⊆ E(S1), as claimed.
To prove the second assertion, suppose that E denotes the set of idempotents

in S2 and assume that 〈 E 〉 = S2. The first assertion of the lemma implies that
E ⊆ S1, and so S2 = 〈 E 〉 6 S1. As S1 6 S2, the equality S1 = S2 follows. �

Next we define the universal transversal property for permutation groups. Let
P be a partition of a set X. Recall that a subset I of X is called a transversal for
P if every class of P contains precisely one element of I. If X is a set and a is a
transformation of X, then the image of an element α ∈ X under a is denoted by
αa. If Y is a subset of X, then we may consider the image Y a = {αa | α ∈ Y } of
Y under a.

Definition 2.3. A permutation group G of degree n is said to have the universal
transversal property if for every subset I of {1, 2, . . . , n} and every partition P of
{1, 2, . . . , n} with |I| classes, there exists g ∈ G such that Ig is a transversal for P .

In the following examples we describe a group that satisfies the universal transver-
sal property, and another that does not. Recall that if G is a permutation group
acting on a set X, then, for α ∈ X, the set {αg | g ∈ G} is said to be a G-orbit
and is denoted by αG. The set of G-orbits form a partition of X and G is called
transitive if X is a G-orbit. The permutation group G acts on the set of subsets of
X (defined above) and we may consider the G-orbit of a subset Y ⊆ X.

Example 2.4. Set G = 〈(1 2 3 4 5)〉. Then G is a cyclic group with order 5, and
we claim that G satisfies the universal transversal property. For r ∈ {1, 4, 5}, the
group G is transitive on the set of subsets containing precisely r-elements. Hence we
only need to prove this claim for transversals and partitions containing either two
or three members. The G-orbits on the set of subsets with two elements are

{1, 2}G = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}} and
{1, 3}G = {{1, 3}, {2, 4}, {3, 5}, {4, 1}, {5, 2}}.

Suppose that P is a partition of {1, . . . , 5} with two classes such that none of the
elements in one of the orbits is a transversal for P . Then every pair of elements
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in the orbit must lie in the same class of P , which implies that P contains only
one class, a contradiction. The G-orbits on the set of subsets with three elements
are {1, 2, 3}G and {1, 2, 4}G. An argument similar to the one above, shows that a
partition that has no transversal in one of these orbits can have at most two classes.
Hence G must have the universal transversal property.

Example 2.5. Set G = 〈(1 2 3 4 5 6 7)〉. Then G is a cyclic group with order 7. In
contrast with the previous example, G does not satisfy the universal transversal
property. Indeed, an easy calculation shows that the G-orbit

{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}, {1, 6, 7}, {1, 2, 7}}

contains no transversal for the partition {{1}, {2, 3, 4, 6, 7}, {5}}.

Recall that the kernel of a transformation a ∈ Tn is the equivalence relation
{ (α, β) | αa = βa } and is denoted by ker a. The image of a ∈ Tn is denoted by
im a. The rank of a transformation a is defined as | im a|. Following [13], for a given
G 6 Sn and a ∈ Tn, we set

KG(a) = {g ∈ G | rank a = rank aga}.

It is straightforward to verify (and also noted before [13, Theorem 2.3]) that g ∈
KG(a) if and only if g maps im a into a transversal of ker a.

Lemma 2.6. Let a ∈ Tn \ Sn and let G 6 Sn. Then G satisfies the universal
transversal property if and only if KG(a) 6= ∅ for all a ∈ Tn.

Proof. Note that G satisfies the universal transversal property if and only if for
all a ∈ Tn there is some g ∈ G such that im ag is a transversal for ker a; that
is g ∈ KG(a). Hence G satisfies the universal transversal property if and only if
KG(a) 6= ∅ for all a ∈ Tn. �

The main results of this paper rely on the classification of universal transversal
groups, given in the following theorem. The permutation groups that appear in
this theorem are considered in their natural actions. The group AGL(1, p) acts
on the p vectors of a one-dimensional vector space over the field of p elements,
and the groups C5, D5 are considered as subgroups of AGL(1, 5). The projective
groups PGL, PSL, and PΓL are viewed as permutation groups acting on the set
of projective points (that is, the set of one-dimensional subspaces) of their natural
module.

Theorem 2.7. A subgroup G of Sn has the universal transversal property if and
only if one of the following is valid:

(i) n = 5 and G ∼= C5, D5, or AGL(1, 5);
(ii) n = 6 and G ∼= PSL(2, 5) or PGL(2, 5);

(iii) n = 7 and G ∼= AGL(1, 7);
(iv) n = 8 and G ∼= PGL(2, 7);
(v) n = 9 and G ∼= PSL(2, 8) or PΓL(2, 8);

(vi) G = An or Sn.

The proof of Theorem 2.7 will be given in Section 4.
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3. The proofs of the main results

In this section we prove Theorems 1.1 and 1.2. We start with a lemma that
links the universal transversal property with the classes of idempotent generated
semigroups and regular semigroups. This lemma essentially allows us to prove one
direction of the main theorems.

Lemma 3.1. Let G be a subgroup of Sn such that one of the following properties
holds:

(i) 〈G, a 〉 \G is idempotent generated for all a ∈ Tn \ Sn;
(ii) 〈G, a 〉 \G is regular for all a ∈ Tn \ Sn;

(iii) 〈 ag | g ∈ G 〉 is idempotent generated for all a ∈ Tn \ Sn.
(iv) 〈 ag | g ∈ G 〉 is regular for all a ∈ Tn \ Sn.

Then G has the universal transversal property.

Proof. Let us assume by contradiction that G does not have the universal transver-
sal property, and show that assertions (i)–(iv) are not valid. By Lemma 2.6, there
is some a ∈ Tn such that KG(a) = ∅. We note that 〈 ag | g ∈ G 〉 6 〈G, a 〉 \G and
that a ∈ 〈 ag | g ∈ G 〉 ∩ 〈G, a 〉 \G.

Let b be an idempotent in 〈G, a 〉 \G and hence in 〈 ag | g ∈ G 〉 by Lemma 2.2.
Then b is of the form g1ag2a · · · gk−1agk where g1, . . . , gk ∈ G. We claim that k > 3.
Indeed if g1ag2 is an idempotent with some g1, g2 ∈ G, then g1ag2g1ag2 = g1ag2

and so ag1g2a = a. In particular, rank ag1g2a = rank a, which is impossible as
KG(a) = ∅. Hence b = g1ag2a · · · gk−1agk with k > 3, as claimed. Note that
rank b 6 rank ag2a and, as g2 6∈ KG(a), that rank ag2a < rank a. Therefore rank b <
rank a, and the element a is not a member of the semigroup generated by the
idempotents of 〈G, a 〉 \G or 〈ag | g ∈ G 〉. Thus assertions (i) and (iii) do not hold.

To prove that assertions (ii) and (iv) fail, we show that a is not a regular element
of 〈G, a〉\G. Suppose as above that a is regular and there is b ∈ 〈G, a〉\G such that
a = aba. Then rank ab = rank a. In addition, ab = abab, and so ab is an idempotent.
We obtain a contradiction, as, by the previous paragraph, the semigroup 〈G, a 〉\G
has no idempotents with the same rank as a. That is, a is not a regular element
of 〈G, a 〉 \G, and, since 〈 ag | g ∈ G 〉 6 〈G, a 〉 \G, it is not a regular element of
〈 ag | g ∈ G 〉. Therefore 〈 G, a 〉 \ G is not a regular semigroup, and neither is its
subsemigroup 〈 ag | g ∈ G 〉. �

We can now prove Theorem 1.1. The symbol [α1, α2, . . . , αn] denotes the element
of Tn that maps 1 7→ α1, 2 7→ α2, . . . , n 7→ αn.

Proof of Theorem 1.1. If 〈G, a 〉 \G is idempotent generated, then, by Lemma 2.2,
〈ag | g ∈ G 〉 = 〈G, a 〉 \G, and so 〈ag | g ∈ G 〉 is also idempotent generated. Thus
statement (i) implies statement (ii).

Let us next show that statement (ii) implies statement (iii). By assumption,
〈ag | g ∈ G 〉 is idempotent generated for all a ∈ Tn \Sn. Hence Lemma 3.1 implies
that G satisfies the universal transversal property. By Theorem 2.7, it suffices to
show, for G ∈ {C5, D5, AGL(1, 7), PGL(2, 7), PSL(2, 8), PΓL(2, 8)}, that there
exists some a ∈ Tn \ Sn such that the semigroup 〈 ag | g ∈ G 〉 is not generated by
idempotents. Using the GAP computational algebra system, it is possible to show
that the required transformations a are [1, 3, 2, 2, 2], [1, 2, 3, 3, 3], [1, 2, 3, 3, 3, 3, 3],
[6, 2, 3, 4, 6, 6, 6, 6], [1, 2, 3, 5, 4, 5, 4, 4, 5], and [1, 2, 3, 5, 4, 5, 4, 4, 5], respectively; see
Section 5 and [2] for further description of the computations.
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The assertion that statement (iii) implies statement (i) is verified as follows. The
groups Sn and An satisfy statement (i), by Lemma 2.1, so we may assume that G is
one of the groups AGL(1, 5), PSL(2, 5), PGL(2, 5). We used the computational al-
gebra package GAP to verify, for these groups, that for all a ∈ Tn\Sn the semigroup
〈G, a 〉 \G is idempotent generated. See Section 5 and [2] for the details. �

Let us now prove Theorem 1.2.

Proof of Theorem 1.2. First we prove that (i) implies (ii). It suffice to prove that
if a ∈ Tn \ Sn such that 〈 G, a 〉 is regular, then 〈 G, a 〉 \ G is regular. Assume
that 〈 G, a 〉 is regular for some G 6 Sn and for some a ∈ Tn \ Sn. Then for each
u ∈ 〈 G, a 〉 \ G there is some v ∈ 〈 G, a 〉 with u = uvu. If v 6∈ G, then u is a
regular element of 〈 G, a 〉 \ G, and so we may assume that v ∈ G. Then vuv 6∈ G
and u(vuv)u = (uvu)vu = uvu = u. Thus u is regular in 〈 G, a 〉 \ G also in this
case, and so 〈G, a 〉 \G is a regular semigroup, as claimed.

Next we prove that assertion (ii) implies (iii). Suppose that G is a permutation
group such that 〈G, a 〉 \G is regular for all a ∈ Tn \ Sn. Then, by Lemma 3.1, G
satisfies the universal transversal property, and so KG(a) 6= ∅ for all a ∈ Tn. Let
a ∈ Tn \Sn, and let b ∈ 〈ag |g ∈ G 〉. Then KG(b) 6= ∅, and hence [13, Theorem 2.3]
implies that b is regular in 〈 bg | g ∈ G 〉. As 〈 bg | g ∈ G 〉 6 〈 ag | g ∈ G 〉, we find
that b is regular in 〈 ag | g ∈ G 〉, and so 〈 ag | g ∈ G 〉 is a regular semigroup.

The fact that (iii) implies (iv) is a consequence of Lemma 3.1 and Theorem 2.7.
Finally, we prove that (iv) implies (i). Let a ∈ Tn \ Sn. We are required to

show, for b ∈ 〈G, a 〉, that b is regular in 〈G, a 〉. As G has the universal transversal
property, Lemma 2.6 gives that KG(b) 6= ∅. Thus, by [13, Theorem 2.3], the element
b is regular in 〈G, b 〉. As 〈G, b 〉 6 〈G, a 〉, we find that b is regular in 〈G, a 〉, as
claimed. �

4. The classification of Universal transversal groups

The proof of Theorem 2.7 is given in this section. It can be verified using the com-
putational algebra system GAP [9] that the groups C5, D5, AGL(1, 5), PSL(2, 5),
PGL(2, 5), AGL(1, 7), PGL(2, 7), PSL(2, 8), PΓL(2, 8) listed in the theorem satisfy
the universal transversal property; full details of the computation are available on
the companion webpage [2] (see also Section 5). A permutation group acting on
a set X is said to be k-homogeneous if it is transitive on the set of subsets of X
with size k. The alternating group An is k-homogeneous for k = 1, 2, . . . , n; see
[8, Exercise 2.1.4]. Thus the k-homogeneous groups An and Sn have the universal
transversal property, and so the proof of one direction of Theorem 2.7 is concluded.

Synchronizing groups were first introduced in [3] and a combinatorial character-
ization was given in [1]. A permutation group G 6 Sn is said to be synchronizing
if for every non-trivial partition P (a partition is said to be non-trivial if it has at
least 2 and at most n− 1 blocks) of {1, . . . , n} and every transversal S of P , there
exists g ∈ G such that Sg is not a transversal for P . Recall that a permutation
group is said to be primitive if no non-trivial partition of the underlying set is in-
variant under the group action; see also [8, Section 1.5]. If G preserves a partition
P of {1, . . . , n}, then any image of a transversal of P is again a transversal. Hence
a synchronizing group is transitive and primitive (see also [23, Introduction]).

Lemma 4.1. Every universal transversal group is synchronizing, and hence such
a group is transitive and primitive.



GROUPS, REGULAR SEMIGROUPS, AND IDEMPOTENT GENERATED SEMIGROUPS 9

Proof. Suppose that G is a universal transversal group acting on a set X. Let P
be a non-trivial partition of X and let S be a transversal for P . Let α, β ∈ X be
two distinct elements in the same block of P . Let P1 be a partition of X such that
{α}, {β} ∈ P1 and |P | = |P1|. Now, by assumption, there exists g ∈ G such that
Sg is a transversal for P1 and hence α, β ∈ Sg. Thus Sg is not a transversal for P ,
which shows that G is synchronizing. Therefore G is transitive and primitive. �

We note that it is possible to prove that a universal transversal group is transitive
and primitive without using the concept of synchronizing groups. However, we
decided to include the proof above, as synchronizing groups will play some further
role in this paper.

A subgroup of Sn is said to be proper if it does not contain An. Next we prove
that a proper primitive group of large enough degree does not satisfy the universal
transversal property. Before proving this result we introduce some terminology. Let
r ∈ N. We say that a partition P of a set is r-singular if it has r + 1 classes, r of
which contain exactly 1 element. The number of r-singular partitions of {1, . . . , n}
is clearly

(
n
r

)
. Further, if R is a subset of {1, . . . , n} with r + 1 elements, then the

number of r-singular partitions P of {1, . . . , n} such that R is a transversal for P
is r + 1.

Lemma 4.2. If G is a proper primitive group with degree at least 47, then G does
not satisfy the universal transversal property.

Proof. It is known that proper primitive groups have ‘small’ orders. More precisely,
in [19, Corollary 1.1] it is proved that if G 6 Sn is a proper primitive group, then

(1) |G| < 50n
√
n.

Thus the strategy of the proof is to argue that universal transversal groups must
have order at least 50n

√
n. The first step is to find a lower bound for the order of

a group with the universal transversal property.
Suppose R is an (r+1)-element set. Then the orbit of R under G must contain a

transversal for every r-singular partition of {1, . . . , n}. As noted above, the number
of r-singular partitions of {1, ..., n} is

(
n
r

)
and each (r+1)-element set is a transversal

for exactly (r + 1) r-singular partitions of {1, . . . , n}. Hence if G has the universal
transversal property, then

(2) |G|(r + 1) >
(
n

r

)
must hold for all r ∈ {1, . . . , n− 1}, and hence

(3)
(
n

r

)
6 50n

√
n(r + 1).

We complete the proof by showing that (3) fails to hold for n > 47 with r = n/2
when n is even and r = (n+ 1)/2 when n is odd. That is, we show that

(4) 50(2r)
√

2r(r + 1) <
(

2r
r

)
and that

(5) 50(2r + 1)
√

2r+1(r + 1) <
(

2r + 1
r

)
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holds for sufficiently large r. We only prove (4), as the proof of (5) is very simi-
lar. Let A(r) and B(r) denote the left-hand side and the right-hand side of (4),
respectively. We use induction on r. It is easy to compute that A(r) < B(r) for
r ∈ {24, . . . , 46}. Assume that r > 46, that A(r) < B(r), and let us show that
A(r + 1) < B(r + 1). We claim that A(r + 1)/A(r) < B(r + 1)/B(r) which im-
plies immediately that A(r + 1) < B(r + 1). First, note that B(r + 1)/B(r) =
(2r + 1)(2r + 2)/(r + 1)2 = 2(2r + 1)/(r + 1), and that

A(r + 1)
A(r)

=
50(2r + 2)

√
2r+2(r + 2)

50(2r)
√

2r(r + 1)
6

2(2r + 2)
√

2r+2

(2r)
√

2r
.

Hence it suffices to show that

(6)
(2r + 2)

√
2r+2

(2r)
√

2r
<

2r + 1
r + 1

.

It is easy to see that (6) holds for r = 46. The fact that it holds for r > 47 follows
from the observation that the left-hand side of (6) is decreasing, while the right-
hand side is increasing. The latter of these claims is trivial. For the former, the
derivative of the function x 7→ (2x+ 2)

√
2x+2/2x

√
2x is

x 7→ C(x)
(√

x
√
x+ 1 log(x+ 1) +

√
x
√
x+ 1(log 2 + 2)

x(2
√

2
√
x+1)/2(

√
2x+

√
2)2
√

2
√
x

− (x+ 1) log x+ (log 2 + 2)(x+ 1)
x(2
√

2
√
x+1)/2(

√
2x+

√
2)2
√

2
√
x

)
,

where C(x) = (x + 1)
√

2
√
x+12

√
2
√
x+1. Since

√
x
√
x+ 1 log(x + 1) < (x + 1) log x

and
√
x
√
x+ 1 < (x + 1), we obtain that this derivative is negative, which shows

that the left-hand side of (6) is decreasing, as claimed. �

As the previous lemma gives a practical upper bound for the degree of a proper
universal transversal group, we could finish the classification of such groups using
computer calculation only. However, using the structure theorem of finite primi-
tive permutation groups and some elementary combinatorics, we can significantly
reduce the amount of computer calculation that is required to prove Theorem 2.7.
Primitive permutation groups are described by the O’Nan-Scott Theorem that di-
vides these group into several classes. Statements of this theorem can be found
in [8, Section 4.8] and in [5, Sections 4.4–4.5], while in [4] there is a detailed com-
parison of the different versions of the theorem that can be found in the literature.
Since the order of a non-abelian finite simple group is at least 60, combining the
O’Nan-Scott Theorem with the bound in Lemma 4.2 gives that a proper universal
transversal group is either an almost simple group, an affine group, or a subgroup
of a wreath product in product action.

A finite group is said to be almost simple if it has a unique minimal normal
subgroup which is a non-abelian simple group. Almost simple primitive groups
form a class of primitive groups in the O’Nan-Scott Theorem. If G is a permutation
group acting on X, then the wreath product W = G o Sn can be considered as
a permutation group acting on the cartesian product Xn. A primitive group of
product action type is a suitable subgroup of such a wreath product W in the case
when G is an almost simple primitive group.
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A primitive permutation group G is said to be affine if it has an abelian normal
subgroup. Affine primitive groups can be characterized as follows. Let V be an
n-dimensional vector space over a field Fp of p elements for some prime p, and let H
be a subgroup of the group GL(V ) of invertible linear transformations of V . Every
element v ∈ V defines a permutation τv of V where τv : u 7→ u+v for all u ∈ V . The
collection T of the τv is a subgroup of the full symmetric group SymV isomorphic
to the additive group of V . Similarly, the elements of H can be considered as
permutations of V , and so H can also be viewed as a subgroup of SymV . It is easy
to see that H normalizes T , and so their product TH is a subgroup of SymV . As
T is transitive, so is TH. Further, TH is primitive if and only if H is irreducible;
that is, no non-trivial, proper subspace of V is invariant under H. In this case,
as T is an abelian normal subgroup of TH, the primitive group TH is affine.
Conversely, by [8, Theorem 4.7A], every affine primitive group is permutationally
isomorphic to a group of the form TH. Permutational isomorphism is defined in [8,
page 17]. Permutationally isomorphic groups are essentially the same except for
the labeling of the points on which they act. In particular, the degree of an affine
primitive group is a prime-power. For each prime-power pk there is a largest affine
group with degree pk constructed as follows. Let V be the k-dimensional vector
space over Fp and let T denote the subgroup formed by the τv as defined above.
Then the group TGL(V ) is called the affine general linear group and is denoted by
AGL(k, p). Every affine primitive group with degree pk is a subgroup of AGL(k, p).

Lemma 4.3. If G is a permutation group of degree n with the universal transversal
property, then one of the following must hold:

(i) n 6 4;
(ii) G 6 AGL(1, p) with p ∈ {5, 7};
(iii) G is an almost simple primitive group.

Proof. By Lemmas 4.1 and 4.2, a group with the universal transversal property is
synchronizing, and hence it is primitive of degree at most 46. As noted above, a
primitive group of such small degree is either almost simple, or a subgroup of a
wreath product, or affine. As subgroups of wreath products in product action are
non-synchronizing (see [23, Example 3.4]), they cannot have the universal transver-
sal property, by Lemma 4.1. Since an affine primitive group of degree pk is a
subgroup of AGL(k, p), and there is no affine group of degree 6, the statement of
the theorem is valid whenever n 6 7. Thus we may assume without loss of gener-
ality that n > 7 and we are required to show that an affine primitive group with
degree n does not have the universal transversal property.

Assume that G is a primitive group of affine type acting on a vector space V = Fkp
for some prime p and integer k. A translate of a one-dimensional subspace in V is
said to be a line and a translate of a 2-dimensional subspace is said to be a plane.
The action of G on V preserves the set of lines and the set of planes. Suppose first
that p is at least 5 and dimV > 2. In this case a line has at least 5 elements and
there are three vectors which do not lie on a common line. Choose 3 vectors v1, v2,
v3 which do not lie on a common line and let P be the partition

{{v1}, {v2}, {v3}, V \ {v1, v2, v3}}.

Now let u1, u2, u3, u4 be 4 vectors on a common line and set

S = {u1, u2, u3, u4}.
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If g is an element of G, then the image Sg contains 4 vectors which lie on a common
line. On the other hand, if R is a transversal for P , then R must contain v1, v2, v3

and these do not lie on a common line. Thus no image Sg of S can be a transversal
of P , and so G does not have the universal transversal property.

Suppose now that either p = 2 and dimV > 4 or p = 3 and dimV > 3. In this
case we choose four vectors v1, v2, v3, and v4 on a common plane and choose 5
vectors u1, u2, u3, u4, u5 so that no four of them lie on a common plane. If p = 3,
then we may choose u1 = 0, u2 = b1, u3 = b2, u4 = b3, u5 = b1 + b2 + b3, while
if p = 2 then u1 = 0, u2 = b1, u3 = b2, u4 = b3 and u5 = b4 are suitable where
b1, b2, . . . , bk is a basis of V . Then an argument similar to the one above shows
that no image of {u1, u2, u3, u4, u5} by any element of G is a transversal for the
partition

{{v1}, {v2}, {v3}, {v4}, V \ {v1, v2, v3, v4}}.
Assume now that dimV = 1 and let p > 11. We identify V with Fp. Set

P = {{0}, {1}, {2},Fp \ {0, 1, 2}}
and

S = {0, 1, 3, 4}.
If g ∈ G, then there are a, b ∈ Fp such that xg = (x + a)b = xb + ab for all
x ∈ Fp. Thus 0g = ab, 1g = b + ab, 3g = 3b + ab, 4g = 4b + ab. If Sg =
{ab, b+ ab, 3b+ ab, 4b+ ab} is a transversal for P , then there are three elements x,
y, and z of Sg such that x − y = y − z. However, using that p > 11, inspecting
all 24 possibilities for x, y, and z, we find that it is not possible to choose such
elements.

The remaining cases p = 2, dimV = 3 and p = 3, dimV = 2 can be handled
as follows. Let G 6 AGL(3, 2), then G can be viewed as a group acting on the
3-dimensional vector space V over F2. It is not hard to verify that the orbit of the
subset

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}
does not contain a transversal for the partition

{{(0, 0, 0), (0, 0, 1)}, {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}, {(1, 1, 0)}, {(1, 1, 1)}}.
The last case is G 6 AGL(2, 3) and hand computation can show that the orbit of
the subset

{(0, 0), (0, 1), (0, 2)}
does not contain a transversal for the partition

{{(0, 0)}, {(0, 1), (0, 2), (1, 2), (2, 1)}, {(1, 0), (2, 0), (1, 1), (2, 2)}}.
The proof is now complete. �

Now we are ready to prove Theorem 2.7.

The proof of Theorem 2.7. Suppose that G 6 Sn is a proper primitive permutation
group that satisfies the universal transversal property. We may assume that G is
not listed in Theorem 2.7. A primitive group of degree 3 or 4 is either an alternating
or a symmetric group. A primitive group of degree 5, is either an alternating or
symmetric group, or listed in Theorem 2.7(i). Thus G must either be a subgroup
of AGL(1, 7) or an almost simple group. Further, we proved in Lemma 4.2, that
the order of G must satisfy (2) with r = bn/2c. Using the primitive groups library
of GAP, we found that there are 32 such groups and they are listed in the second
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Deg Group(s) GAP id. Set Partition

7 PSL(3, 2) 5 {1, 2, 4} {1}, {2, 3, 4, 7}, {5, 6}
7 : 3 3 {1, 2, 4, 7} {1}, {2}, {3}, {4, 5, 6, 7}
D7 2 {1, 3, 7} {1}, {2}, {3, 4, 5, 6, 7}

8 PSL(2, 7) 4 {1, 2, 3, 5} {1}, {2}, {3, 4, 5, 7}, {6, 8}
10 A5, S5 1, 2 {1, 2, 3, 5, 6} {1}, . . . , {5}, {6, . . . , 10}

PSL(2, 9), PGL(2, 9) 3, 4

S6, M(10) 5, 6

PΓL(2, 9) 7

11 PSL(2, 11) 5 {1, 2, 3, 5} {1}, {2}, {3, . . . , 11}, {9}
M(11) 6 {1, 2, 3, 4, 6} {1}, {2}, {3}, {4, 5, 6,

7, 10, 11}, {8, 9}
12 M(12) 2 {1, . . . , 6} {1, . . . , 6}, {7, 8}, {9}, . . . ,

{12}
M(11) 1 {1, 2, 3, 4, 11, 12} {1}, . . . , {5}, {6, . . . , 12}
PGL(2, 11), PSL(2, 11) 4, 3 {1, 2, 3, 4, 6, 7} {1}, . . . , {5}, {6, . . . , 12}

13 PSL(3, 3) 7 {1, . . . , 5, 7, 8} {1}, . . . , {6}, {7, . . . , 13}
14 PGL(2, 13), PSL(2, 13) 2, 1 {1, . . . , 6, 9, 12} {1}, . . . , {7}, {8, . . . , 14}
15 PSL(4, 2), A7 4, 1 {1, . . . , 6, 8, 12} {1}, . . . , {7}, {8, . . . , 15}
17 PSL(2, 24), PSL(2, 24) : 4 6,8 {1, . . . , 7, 11, 14} {1}, . . . , {8}, {9, . . . , 17}

PSL(2, 24) : 2 7 {8, . . . , 14, 16, 17} {1}, . . . , {8}, {9, . . . , 17}
18 PGL(2, 17) 2 {1, . . . , 8, 10, 11} {1}, . . . , {9}, {10, . . . , 18}
21 PΣL(3, 4), PGL(3, 4), 5, 6 {1, . . . , 9, 11, 13} {1}, . . . , {10}, {11, . . . , 21}

PΓL(3, 4) 7

22 M(22), M(22) : 2 1, 2 {1, . . . , 10, 12, 15} {1}, . . . , {11}, {12, . . . , 22}
23 M(23) 5 {1, . . . , 5, 8, 11} {1}, . . . , {6}, {7, . . . , 23}

Table 1

column of Table 1. The third column of the table contains the catalogue number of
the groups in the primitive groups library of GAP. For instance, the group PSL(3, 2)
can be accessed as PrimitiveGroup( 7, 5 ). In order to complete the proof of
Theorem 2.7 it is necessary to find a partition P and a subset S of {1, 2, . . . , n}
such that no element in SG is a transversal for P . Such subsets and partitions can
be found in Table 1. �

5. Computations

In this section we give a brief description of the methods used to perform the
various computations which are used above. More specifically, the following were
verified computationally using GAP [9].

(a) In Theorem 1.1, assertion (ii) implies assertion (iii): if G is one of the groups
C5, D5, AGL(1, 7), PGL(2, 7), PSL(2, 8), PΓL(2, 8), then there exists an
a ∈ Tn \ Sn such that 〈G, a 〉 \G is not idempotent generated.

(b) In Theorem 1.1, assertion (iii) implies assertion (i): if G is one of the groups
AGL(1, 5), PSL(2, 5), PGL(2, 5), then 〈G, a 〉 \G is idempotent generated
for all a ∈ Tn \ Sn.
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(c) One direction in the proof of Theorem 2.7: if G is any of the groups listed
in Theorem 2.7 excluding An and Sn, then G has the universal transversal
property.

(d) Table 1: if G is any of the groups listed in Table 1, then G does not have
the universal transversal property.

We prepared a companion webpage [2] that contains full details of these compu-
tations. The procedures that were used in these computations were collected into
a GAP package, so that the reader can easily reproduce these computations her-
self. In addition to the GAP package, the webpage contains detailed log files of the
computations that were necessary to verify the statements above.

Parts (c) and (d) can be verified using GAP by performing a brute force search.
More precisely, if G is a permutation group of degree n, then for every subset I of
{1, 2, . . . , n} and for every partition P of {1, 2, . . . , n} with |I| classes, we verified
that the orbit of I under G contained a transversal of P . These computations are
feasible due to the small degrees of the groups under consideration and the efficient
methods in GAP for computing with permutation groups.

The idempotents with a specific rank in 〈 G, a 〉 \ G can be found using the
simple orbit algorithm described in [16] and [17]. Similarly simple orbit calculations,
described in the same papers, can be used to test membership in transformation
semigroups. As such, the condition of the next lemma, equivalent to 〈 G, a 〉 \ G
being idempotent generated, can be verified efficiently using GAP.

Lemma 5.1. Let a ∈ Tn \Sn and let E denote the set of idempotents of 〈G, a 〉 \G
with rank equal to rank a. Then 〈 G, a 〉 \ G is idempotent generated if and only if
every element of GaG is contained in 〈 E 〉.

Proof. Let S = 〈 G, a 〉 \ G. Then every element in S can be given as a product
g1ag2a · · · gn−1agn for some g1, g2, . . . , gn ∈ G. In particular, the set GaG is a
generating set for S. Thus 〈 G, a 〉 \ G is idempotent generated if and only if
every element of GaG lies in the subsemigroup generated by the idempotents of S.
Every element in GaG has rank equal to that of a. It follows that S is idempotent
generated if and only if every element of GaG lies in 〈 E 〉. �

If G 6 Sn and Γ is a subset of {1, . . . , n}, then the setwise stabilizer of Γ in G
is the subgroup GΓ = { g ∈ G | Γg = Γ }. The setwise stabilizer induces a group of
permutations on the set Γ denoted by (GΓ)Γ.

Lemma 5.2. Let a, b ∈ Tn where rank b2 = rank b and such that there exist
g, h ∈ G with (ker a)g = ker b, (im a)h = im b, and (g−1ah)|im b(Gim b)im b =
b|im b(Gim b)im b. Then 〈G, a 〉 = 〈G, b 〉.

Proof. First we verify that the transformation g−1ah leaves im b invariant, and
so the expression (g−1ah)|im b(Gim b)im b makes sense. Indeed, set I = im b. The
condition rank b2 = rank b implies that I is a transversal for ker b, and so Ig−1 is
a transversal for (ker b)g−1 = ker a. Hence Ig−1ah = (im a)h = im b. Therefore
(im b)g−1ah = im b as claimed.

Next we show that the conditions of the lemma imply that there is an element
u ∈ Gim b such that g−1ahu = b. As (g−1ah)|im b(Gim b)im b = b|im b(Gim b)im b,
we obtain that there is an element u ∈ Gim b such that g−1ahu induces the same
permutation on im b as b. Let α ∈ {1, . . . , n}. Since I is a transversal for ker b,
there is an element α ∈ I such that α and α are in the same block of ker b; that is
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αb = αb. This implies that αg−1 and αg−1 are in the same block of ker a, and so
αg−1a = αg−1a. Thus

αg−1ahu = αg−1ahu = αb = αb.

Hence the transformations g−1ahu and b coincide as claimed. This gives that
a ∈ 〈G, b 〉 \G and b ∈ 〈G, a 〉 \G. �

Let G be a subgroup of Sn, let 1 6 i 6 n−1, let I1, I2, . . . , Im be representatives
of orbits of G on subsets of {1, 2, . . . , n} with size i, let K1,K2, . . . ,Kr be repre-
sentatives of orbits of G on the partitions of {1, 2, . . . , n} with i classes, let fj,k
be an fixed arbitrary element of Tn \ Sn with image Ij and kernel Kk, let Tj be a
transversal of cosets of the stabilizer GIi

in G, and finally, let F = { fj,kt | t ∈ Tj }.
Then to verify that 〈 G, a 〉 \ G is idempotent generated for all a ∈ Tn \ Sn with
rank(a) = i, it suffices, by Lemma 5.2 and the preceding comments, to verify that
〈G, a 〉 \G is idempotent generated for all a ∈ F .

6. Final remarks and problems

We finish the paper by stating some related open problems.
(i) Is it possible to prove the main theorems of this paper without using results

that rely on the classification of finite simple groups? In order to give a positive
answer to this question, one has to give another proof for Theorem 2.7 that does
not use Maróti’s bound for the order of a proper primitive group.

(ii) Classify the subgroups G of Sn that together with any singular transforma-
tion a satisfy 〈G, a 〉 = 〈 ag | g ∈ G 〉.

(iii) Prove classification theorems analogous to Theorems 1.1 and 1.2 for linear
groups and to groups of automorphisms of independence algebras; see [7, 10] for
the background theory of independence algebras.

(iv) Classify the pairs (G, a), where G 6 Sn and a ∈ Tn such that 〈 G, a 〉 is
regular. Consider also the corresponding problem for linear groups. As mentioned
in the introduction, McAlister proved that for every idempotent e ∈ Tn such that
rank(e) = n− 1, and for all G 6 Sn the semigroup 〈G, e 〉 is regular.
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[19] Attila Maróti. On the orders of primitive groups. J. Algebra, 258(2):631–640, 2002.
[20] D. B. McAlister. Groups, semilattices and inverse semigroups I, II. Trans. Amer. Math. Soc.,

192:227–244; ibid. 196 (1974), 351–370, 1974.

[21] Donald B. McAlister. Semigroups generated by a group and an idempotent. Comm. Algebra,
26(2):515–547, 1998.

[22] W. D. Munn. A note on E-unitary inverse semigroups. Bull. London Math. Soc., 8(1):71–76,
1976.

[23] Peter M. Neumann. Primitive permutation groups and their section-regular partitions. Michi-

gan Math. J., 58:309–322, 2009.
[24] D. Rees. On semi-groups. Proc. Cambridge Philos. Soc., 36:387–400, 1940.

[25] I. Schreier. über Abbildungen einer abstracten Menge auf ihre Teilmengen. Fund. Math.,

28:261–264, 1936.
[26] R. P. Sullivan. Automorphisms of transformation semigroups. J. Austral. Math. Soc. Ser. A.,

1975.

[27] J. S. V. Symons. Normal transformation semigroups. J. Austral. Math. Soc. Ser. A, 22(4):385–
390, 1976.


