A bridge between algebra and combinatorics

Peter J. Cameron, University of St Andrews

Peter Neumann memorial
9 April 2022
A preprint

When I arrived in Oxford to start my DPhil in 1968, after I had read Wielandt’s *Finite Permutation Groups*, Peter gave me this paper to read:
When I arrived in Oxford to start my DPhil in 1968, after I had read Wielandt's *Finite Permutation Groups*, Peter gave me this paper to read:

Primitive permutation groups of degree $3p$

by Peter M. Neumann.

This paper presents an analysis of primitive permutation groups of degree $3p$, where p is a prime number, analogous to H. Wielandt's treatment (19) of groups of degree $2p$. It is also intended as an example of the systematic use of combinatorial methods as surveyed in §6 for distilling information about a permutation group from knowledge of the decomposition of its character. The work is organised into three parts. Part I contains the lesser half of the calculation, the determination of the decomposition of the permutation character. Part II contains a survey of the combinatorial methods and, based on these methods, the major part of the calculation. Part III ties up loose ends left earlier in the paper and gives a tabulation of detailed numerical results.
The paper was never published. It turned out that Leonard Scott and Olaf Tamaschke had done similar work at about the same time, and although there were plans for Peter and Leonard to collaborate, they never came to anything.
The paper was never published. It turned out that Leonard Scott and Olaf Tamaschke had done similar work at about the same time, and although there were plans for Peter and Leonard to collaborate, they never came to anything.
In the 1960s, three streams previously separate began to converge, bringing different names, axioms, and techniques:

- In permutation group theory, the methods used by Schur and Wielandt on what are now called Schur rings were abstracted into combinatorial structures, largely by Donald Higman, who called them coherent configurations.
- In statistics, the underlying structures of partially balanced incomplete-block designs were abstracted into combinatorial structures, by R. C. Bose and his students, who called them association schemes.
- In the (then) Soviet Union, Boris Weisfeiler and his colleagues were attacking the graph isomorphism problem, and devised combinatorial structures which they called cellular rings.

These types of structure are almost the same, as we will see.
In the 1960s, three streams previously separate began to converge, bringing different names, axioms, and techniques:

- In permutation group theory, the methods used by Schur and Wielandt on what are now called Schur rings were abstracted into combinatorial structures, largely by Donald Higman, who called them coherent configurations.
Background

In the 1960s, three streams previously separate began to converge, bringing different names, axioms, and techniques:

▶ In permutation group theory, the methods used by Schur and Wielandt on what are now called Schur rings were abstracted into combinatorial structures, largely by Donald Higman, who called them coherent configurations.

▶ In statistics, the underlying structures of partially balanced incomplete-block designs were abstracted into combinatorial structures, by R. C. Bose and his students, who called them association schemes.
In the 1960s, three streams previously separate began to converge, bringing different names, axioms, and techniques:

- In permutation group theory, the methods used by Schur and Wielandt on what are now called Schur rings were abstracted into combinatorial structures, largely by Donald Higman, who called them coherent configurations.

- In statistics, the underlying structures of partially balanced incomplete-block designs were abstracted into combinatorial structures, by R. C. Bose and his students, who called them association schemes.

- In the (then) Soviet Union, Boris Weisfeiler and his colleagues were attacking the graph isomorphism problem, and devised combinatorial structures which they called cellular rings.
In the 1960s, three streams previously separate began to converge, bringing different names, axioms, and techniques:

▶ In permutation group theory, the methods used by Schur and Wielandt on what are now called Schur rings were abstracted into combinatorial structures, largely by Donald Higman, who called them coherent configurations.

▶ In statistics, the underlying structures of partially balanced incomplete-block designs were abstracted into combinatorial structures, by R. C. Bose and his students, who called them association schemes.

▶ In the (then) Soviet Union, Boris Weisfeiler and his colleagues were attacking the graph isomorphism problem, and devised combinatorial structures which they called cellular rings.

These types of structure are almost the same, as we will see.
A coherent configuration is a collection A_1, \ldots, A_r of square 0-1 matrices of the same size, summing to the all-1 matrix J and having a subset which sums to the identity matrix I, closed under transposition, and having the property that for any i, j, we have

$$A_iA_j = \sum_{k=1}^{r} a_{ijk}A_k.$$
A coherent configuration is a collection A_1, \ldots, A_r of square 0-1 matrices of the same size, summing to the all-1 matrix J and having a subset which sums to the identity matrix I, closed under transposition, and having the property that for any i, j, we have

$$A_i A_j = \sum_{k=1}^{r} a_{ijk} A_k.$$

If all the matrices are symmetric, it is an association scheme.
A coherent configuration is a collection A_1, \ldots, A_r of square 0-1 matrices of the same size, summing to the all-1 matrix J and having a subset which sums to the identity matrix I, closed under transposition, and having the property that for any i, j, we have

$$A_i A_j = \sum_{k=1}^{r} a_{ijk} A_k.$$

If all the matrices are symmetric, it is an association scheme. A cellular algebra was the same as a coherent configuration apart from a small difference. But the term “cellular algebra” has been used with a quite different meaning by Graham and Lehrer, so this term has dropped out of use.
A **coherent configuration** is a collection A_1, \ldots, A_r of square 0-1 matrices of the same size, summing to the all-1 matrix J and having a subset which sums to the identity matrix I, closed under transposition, and having the property that for any i,j, we have

$$A_i A_j = \sum_{k=1}^{r} a_{ijk} A_k.$$

If all the matrices are symmetric, it is an **association scheme**. A **cellular algebra** was the same as a coherent configuration apart from a small difference. But the term “cellular algebra” has been used with a quite different meaning by Graham and Lehrer, so this term has dropped out of use.

I should stress that this definition can be given in terms of a colouring of the edges of the complete directed graph instead of matrices.
A coherent configuration is a collection A_1, \ldots, A_r of square 0-1 matrices of the same size, summing to the all-1 matrix J and having a subset which sums to the identity matrix I, closed under transposition, and having the property that for any i, j, we have

$$A_i A_j = \sum_{k=1}^r a_{ijk} A_k.$$

If all the matrices are symmetric, it is an association scheme. A cellular algebra was the same as a coherent configuration apart from a small difference. But the term “cellular algebra” has been used with a quite different meaning by Graham and Lehrer, so this term has dropped out of use.

I should stress that this definition can be given in terms of a colouring of the edges of the complete directed graph instead of matrices. Many combinatorial objects are special cases of coherent configurations. The definitions just given probably don’t conjure up a picture in your mind. So here is a special case.
Strongly regular graphs

A simple graph on \(n \) vertices is strongly regular if, for some integers \(k, \lambda, \mu \), it has the properties

- any vertex has \(k \) neighbours;

- any two adjacent vertices have \(\lambda \) common neighbours;

- any two non-adjacent vertices have \(\mu \) common neighbours.

An association scheme with \(r = 3 \) matrices is the same thing as a complementary pair of strongly regular graphs. The famous Petersen graph is an example, with \(k = 3, \lambda = 0, \mu = 1 \).
Strongly regular graphs

A simple graph on \(n \) vertices is strongly regular if, for some integers \(k, \lambda, \mu \), it has the properties

- any vertex has \(k \) neighbours;
- any two adjacent vertices have \(\lambda \) common neighbours;
Strongly regular graphs

A simple graph on n vertices is strongly regular if, for some integers k, λ, μ, it has the properties

- any vertex has k neighbours;
- any two adjacent vertices have λ common neighbours;
- any two non-adjacent vertices have μ common neighbours.
Strongly regular graphs

A simple graph on \(n \) vertices is strongly regular if, for some integers \(k, \lambda, \mu \), it has the properties

- any vertex has \(k \) neighbours;
- any two adjacent vertices have \(\lambda \) common neighbours;
- any two non-adjacent vertices have \(\mu \) common neighbours.

An association scheme with \(r = 3 \) matrices is the same thing as a complementary pair of strongly regular graphs.
Strongly regular graphs

A simple graph on \(n \) vertices is strongly regular if, for some integers \(k, \lambda, \mu \), it has the properties

- any vertex has \(k \) neighbours;
- any two adjacent vertices have \(\lambda \) common neighbours;
- any two non-adjacent vertices have \(\mu \) common neighbours.

An association scheme with \(r = 3 \) matrices is the same thing as a complementary pair of strongly regular graphs. The famous Petersen graph is an example, with \(k = 3, \lambda = 0, \mu = 1 \).
In 1956, Helmut Wielandt proved that a finite primitive permutation group acting on a set Ω of size $2p$ (where p is an odd prime) is 2-transitive, unless p has the form $2a^2 + 2a + 1$ for some positive integer a, in which case it may have rank 3 (this means three orbits on the set $\Omega \times \Omega$, whose sizes are expressed in terms of the parameter a.)
In 1956, Helmut Wielandt proved that a finite primitive permutation group acting on a set Ω of size $2p$ (where p is an odd prime) is 2-transitive, unless p has the form $2a^2 + 2a + 1$ for some positive integer a, in which case it may have rank 3 (this means three orbits on the set $\Omega \times \Omega$, whose sizes are expressed in terms of the parameter a.)

Peter Neumann’s aim was to prove a similar theorem for the case where $|\Omega| = 3p$, where p is a prime greater than 3.
Wielandt and Neumann

In 1956, Helmut Wielandt proved that a finite primitive permutation group acting on a set Ω of size $2p$ (where p is an odd prime) is 2-transitive, unless p has the form $2a^2 + 2a + 1$ for some positive integer a, in which case it may have rank 3 (this means three orbits on the set $\Omega \times \Omega$, whose sizes are expressed in terms of the parameter a.)

Peter Neumann’s aim was to prove a similar theorem for the case where $|\Omega| = 3p$, where p is a prime greater than 3. Wielandt needed to do a lot of work decomposing the permutation character of his group, and then the combinatorial argument, though innovative, is fairly straightforward. For Neumann, on the other hand, the decomposition of the permutation character was easier, because of a theorem of Walter Feit proved in the meantime; but the combinatorial part is much more complicated, and the result too; there are three possible quadratic expressions for the prime p as well as three sporadic values.
At about this time, another pioneer, Charles Sims, was investigating permutation groups using graph theory, specifically results of Bill Tutte.
At about this time, another pioneer, Charles Sims, was investigating permutation groups using graph theory, specifically results of Bill Tutte. Whereas Higman and Neumann considered the coherent configuration associated with a permutation group, which takes all orbital graphs together and uses numerical and algebraic information, Sims chose a particular graph and went more deeply into its structure.
At about this time, another pioneer, Charles Sims, was investigating permutation groups using graph theory, specifically results of Bill Tutte. Whereas Higman and Neumann considered the coherent configuration associated with a permutation group, which takes all orbital graphs together and uses numerical and algebraic information, Sims chose a particular graph and went more deeply into its structure. This led him to his celebrated conjecture, later proved, using the Classification of Finite Simple Groups (CFSG) by three of Peter’s students together with Gary Seitz.
Since then, many parts of combinatorics, including designs, codes, and Latin squares, have been used in the study of permutation groups.
Permutation groups and combinatorics

Since then, many parts of combinatorics, including designs, codes, and Latin squares, have been used in the study of permutation groups. In return, permutation group theory has contributed to several areas of combinatorics, including regular polytopes, fair games, and synchronizing automata.
Permutation groups and combinatorics

Since then, many parts of combinatorics, including designs, codes, and Latin squares, have been used in the study of permutation groups. In return, permutation group theory has contributed to several areas of combinatorics, including regular polytopes, fair games, and synchronizing automata. The two subjects are now close partners.
So what now?

As I explained, Peter’s paper was never published. However, it is a tour de force, and had it been published it would have been recognised as an important link in the chain of ideas sketched earlier. I believe that it is too good to be lost.
So what now?

As I explained, Peter’s paper was never published. However, it is a *tour de force*, and had it been published it would have been recognised as an important link in the chain of ideas sketched earlier. I believe that it is too good to be lost. To explain why, I return to Wielandt’s proof. The first thing to note is that, since those far-off days, we have a new tool, CFSG, which can be used to show that the only case to arise in Wielandt’s theorem is $a = 1, p = 5$, in which case the group is the symmetric or alternating group of degree 5, acting on the ten 2-element subsets of a 5-set.
So what now?

As I explained, Peter’s paper was never published. However, it is a *tour de force*, and had it been published it would have been recognised as an important link in the chain of ideas sketched earlier. I believe that it is too good to be lost. To explain why, I return to Wielandt’s proof. The first thing to note is that, since those far-off days, we have a new tool, CFSG, which can be used to show that the only case to arise in Wielandt’s theorem is $a = 1, p = 5$, in which case the group is the symmetric or alternating group of degree 5, acting on the ten 2-element subsets of a 5-set. A similar remark applies to Neumann’s theorem. So there is no reason to publish the paper as it is, since CFSG makes much stronger results possible.
As I explained, Peter’s paper was never published. However, it is a *tour de force*, and had it been published it would have been recognised as an important link in the chain of ideas sketched earlier. I believe that it is too good to be lost. To explain why, I return to Wielandt’s proof. The first thing to note is that, since those far-off days, we have a new tool, CFSG, which can be used to show that the only case to arise in Wielandt’s theorem is $a = 1, p = 5$, in which case the group is the symmetric or alternating group of degree 5, acting on the ten 2-element subsets of a 5-set. A similar remark applies to Neumann’s theorem. So there is no reason to publish the paper as it is, since CFSG makes much stronger results possible. But that is not the end of the story …
As noted, Wielandt first showed that the permutation character decomposes into irreducible constituents of degrees $1, p - 1,$ and p. From general theory, these numbers are the multiplicities of the eigenvalues of the matrices in the corresponding coherent configuration (these are the identity and the adjacency matrices of a strongly regular graph and its complement).
As noted, Wielandt first showed that the permutation character decomposes into irreducible constituents of degrees 1, $p - 1$, and p. From general theory, these numbers are the multiplicities of the eigenvalues of the matrices in the corresponding coherent configuration (these are the identity and the adjacency matrices of a strongly regular graph and its complement). In the case $p = 5$, the strongly regular graph is the famous Petersen graph, which we met earlier.
In fact the combinatorial part of Wielandt’s argument shows the following:

Theorem

Let Γ be a strongly regular graph on $2n$ vertices, whose eigenvalues have multiplicities 1, $n-1$ and n, for some natural number n. Then one of the following is true:

- Γ or its complement is a disjoint union of n edges;
- Γ or its complement has the parameters found by Wielandt.

I am not sure who first noticed this. The proof is in my book with Jack van Lint. Note that in the second case, the Petersen graph and its complement are not the only examples; there are a number of further examples (the first pairs having 26 vertices).
In fact the combinatorial part of Wielandt’s argument shows the following:

Theorem

Let Γ be a strongly regular graph on $2n$ vertices, whose eigenvalues have multiplicities 1, $n - 1$ and n, for some natural number n. Then one of the following is true:

- Γ or its complement is a disjoint union of n edges;
- Γ or its complement has the parameters found by Wielandt.

I am not sure who first noticed this. The proof is in my book with Jack van Lint. Note that in the second case, the Petersen graph and its complement are not the only examples; there are a number of further examples (the first pairs having 26 vertices).
In fact the combinatorial part of Wielandt’s argument shows the following:

Theorem

Let Γ be a strongly regular graph on $2n$ vertices, whose eigenvalues have multiplicities $1, n - 1$ and n, for some natural number n. Then one of the following is true:

- Γ or its complement is a disjoint union of n edges;
- Γ or its complement has the parameters found by Wielandt.
In fact the combinatorial part of Wielandt’s argument shows the following:

Theorem

Let Γ be a strongly regular graph on $2n$ vertices, whose eigenvalues have multiplicities 1, $n - 1$ and n, for some natural number n. Then one of the following is true:

- Γ or its complement is a disjoint union of n edges;
- Γ or its complement has the parameters found by Wielandt.

I am not sure who first noticed this. The proof is in my book with Jack van Lint. Note that in the second case, the Petersen graph and its complement are not the only examples; there are a number of further examples (the first pairs having 26 vertices).
It is my belief that a similar but substantially more elaborate theorem is hiding in Peter’s calculations. This summer, a project student Marina Anagnostopoulou-Merkouri and I hope to work this out.
It is my belief that a similar but substantially more elaborate theorem is hiding in Peter’s calculations. This summer, a project student Marina Anagnostopoulou-Merkouri and I hope to work this out.

In preparation for this, I have re-typed Peter’s paper in \LaTeX{} from a smudgy scan of a photocopy, and I would be happy to send this to anyone interested.
It is my belief that a similar but substantially more elaborate theorem is hiding in Peter’s calculations. This summer, a project student Marina Anagnostopoulou-Merkouri and I hope to work this out. In preparation for this, I have re-typed Peter’s paper in \LaTeX{} from a smudgy scan of a photocopy, and I would be happy to send this to anyone interested. I should say that typing this paper out was a happy experience; it brought its author back vividly to my mind.
It is my belief that a similar but substantially more elaborate theorem is hiding in Peter’s calculations. This summer, a project student Marina Anagnostopoulou-Merkouri and I hope to work this out. In preparation for this, I have re-typed Peter’s paper in \LaTeX \ from a smudgy scan of a photocopy, and I would be happy to send this to anyone interested. I should say that typing this paper out was a happy experience; it brought its author back vividly to my mind.

\[\text{THANK YOU} \]

\[\ldots \text{ for your attention.} \]